skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hutcheon, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The X2MH6family, consisting of an electropositive cation Xn+and a main group metal M octahedrally coordinated by hydrogen, have been identified as promising templates for high‐temperature conventional superconductivity. Herein, we analyze the electronic structure of two members of this family, Mg2IrH6and Ca2IrH6, showing why the former may possess superconducting properties rivaling those of the cuprates, whereas the latter does not. Within Mg2IrH6the vibrations of the anions IrH64−anions are key for the superconducting mechanism, and they induce coupling in the set of orbitals, which are antibonding between the H 1sand the Ir or orbitals. Because calcium possesses low‐lyingd‐orbitals, →Cadback‐donation is preferred, quenching the superconductivity. Our analysis explains why high critical temperatures were only predicted for second or third row X metal atoms, and may provide rules for identifying likely high‐temperature superconductors in other systems where the antibonding anionic states are filled. 
    more » « less